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Monte Carlo simulations of colloidal dispersions under shear
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~Received 22 July 1997!

We have used a two-dimensional Monte Carlo method to represent the evolution of a colloidal dispersion
under shear. This method involves the action of the Derjaquin-Landau-Verwey-Overbeek potential between
particles and the action of Brownian motion. The parameters of our simulations have been adjusted to fit the
experimental data: temperature and shear velocity. For low volume fractions we find the Newtonian regime
where the dispersion evolves as a fluid. For large volume fractions the dispersion has no longer the properties
of a fluid. As found experimentally, we observe that it forms a slip layer where only a few particles are located
and that allows the dispersion to slip as a whole.@S1063-651X~98!09302-7#

PACS number~s!: 47.50.1d, 47.20.2k, 83.20.Jp, 82.70.Dd
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I. INTRODUCTION

A colloidal dispersion can be considered as a mixture
which the particles of one component are much larger t
those of all the others. If the size difference is sufficien
large, the smaller component can be thought of as formin
fluid that occupies the space between the big partic
Brownian motions of the bigger particles are induced by
collisions of the smaller with the bigger ones.

Nanometric colloidal dispersions resemble molecular
ids for two reasons. First, the Stokes drag force exerted
the solvent on the particles is negligible. Consequently,
motion of the large particles is determined only by interp
ticle interactions and by thermal agitation. Second, the
vation of particle surfaces by solvent molecules causes
interparticle interactions to be of order ofkBT at ambient
temperature, which is the range for fluid behavior. For sim
lar reasons, colloidal dispersions are convenient to study
perimentally. For instance, the strength and the range o
terparticle potential can be varied through modifications
the solvent composition. In addition, the number density
particles can be easily varied while the fluid remains at a
bient pressure.

Transitions from fluid behavior to solid behavior ha
been observed at high number densities of particles. Fl
that are in the transition region flow in a bizarre way@1#.
Typical results have been obtained with nanometric disp
sions of silica in water by Perselloet al. @1#. For dispersions
made at low volume fractions of silica, they found norm
fluid behavior at all shear rates. However, dispersions m
at high volume fractions were found to resist weak sh
stresses, and they yield fracture or slip at sufficiently h
stress. It is expected that this crossover from fluid to so
response should occur for most fluids as a function of sh
rate, i.e., fluid behavior at low shear rates and solid beha
at high shear rates. However, it is not possible experim
tally to cover these ranges of shear rates, as some may b
impossibly high to reach (.103 s21) or inconveniently
slow to follow (,1023s21). Numerical simulations do no
suffer from this limitation, and this was one of the motiv
571063-651X/98/57~2!/1997~7!/$15.00
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tions for the present study. The other motivation was
observation that in such conditions the flow field may b
come inhomogeneous. Indeed, Perselloet al. @1# have ob-
served that the crossover to a solidlike response is assoc
with a localization of the shear in a slip layer. Experime
tally, it was not possible to determine the composition of t
fluid that formed the slip layers, i.e., did it have the sam
composition as the bulk dispersion or did it have a low
particle concentration. Thus a numerical simulation might
a practical alternative to examine the mechanisms that
to the formation of slip layers in very concentrated disp
sions.

There have been a number of theoretical@2# and compu-
tational @3,4# investigations of the effect of high shear rat
though mostly for atomic fluids. Nozieres and Quemada@5#
developed a theory to explain the plug formation in sh
flow by introducing a lift force that leads the particles to t
regions of lower shear. More recently, Schmittet al. @6#
wrote a theory based on the coupling between flow and c
centration to explain the nonlinear response to shear in s
dispersions. From the numerical point of view, Louge@7#
used granular dynamics simulations and obtained a ph
separation for high shear rates. However, his study failed
explain the real causes of this phase separation. Xue
Grest @8# observed a shear-induced alignment of colloid
particles in a Brownian-dynamics simulation carried out
the presence of an oscillating shear flow.

Monte Carlo simulations are often used in the represe
tion of molecular fluids@9#, but they seldom represent th
flow of colloidal particles due to the different nature of th
interactions between particles and molecules. The origina
of our modified Monte Carlo method is that it takes accou
of the interparticle potential and the Brownian motion of t
particles. Moreover, the parameters injected in the simu
tions are calculated to be very close to the experimental o
feature that makes the results more realistic than prev
simulations.

In this paper we will study numerically the shear flow
nanometric spherical dispersions in a two-dimensio
Monte Carlo model. In Sec. II we will present the form
1997 © 1998 The American Physical Society
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1998 57N. OLIVI-TRAN, R. BOTET, AND B. CABANE
experimental results as well as the different physical cha
teristics of such dispersions. In Sec. III we will explain t
Monte Carlo method that has been used and takes accou
the pair potential between particles and their Brownian m
tion. In Sec. IV results will be introduced. Finally, in Sec.
there will be a comparison with experiments and a gen
discussion of the model and the results. We will conclude
Sec. VI.

II. EXPERIMENTS

The common characteristic of nanometric silica disp
sions is their extremely large surface area. Due to this
face area such dispersions can be used for coatings o
promote sol-gel reactions. Strong repulsions between
particle surfaces are needed in order to retain this sur
area.

In water, dispersed particles are usually kept apart fr
each other due to electrostatic repulsions. It has been pro
that colloidal dispersions interact by the mean of t
Derjaguin-Landau-Vervey-Overbeek~DLVO! potential@10#.
This DLVO potential has an attractive van der Waals pa
which can be neglected in most cases, and a repulsive
which can be represented by the Yukawa potential

U~r !

kBT
5

Z2LB

r

e2k~r 22a!

~11ka!2
, ~1!

whereZ54a/LB , a is the particle radius,k is the screening
efficiency, andLB is the Bjerrum length of water. At contac
(r 52a), for a510 nm,Z560, andk21510 nm the repul-
sive energy is 30kBT. This energy allows the dispersion t
remain stable for long times, for several months.

If the pair interaction energy of particles at a distancer is
U(r ), then the neighbors of a particle are effectively e
cluded from a region of radiusae f f around it @11#. Experi-
mentally, it has been shown that the range of interaction
ae f f is very close toa1k21. Finally, the effective volume
fraction fe f f used by the particles can be calculated as

fe f f5f~ae f f /a!d, ~2!

whered is the dimension of space.
The response of dispersions to mechanical testing ma

of two types: linear viscous response to small stresses
nonlinear response to large stresses that may change
structure of the dispersion@12#. For the colloidal dispersions
studied experimentally and numerically here, the occurre
of either behavior is determined by the volume fraction. F
low volume fraction, we recovered the gaslike state: Lin
response was found in all cases unless the shear rate ex
the rates of spontaneous~Brownian! motion for individual
particles that are on the order of 0.4 m s21. For large vol-
ume fraction, i.e., forfe f f.1, the dispersions have the a
pearance and general properties of physical gels without
ing their connectivity. They may be defined as soft solids

Rheological experiments at a steady state were perfor
on the silica dispersions@1#. To compare the shear rate to th
Brownian velocity, it is important to introduce the Pe´clet
number
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Pe5
a2ġ

D0
, ~3!

wherea is the particle radius (1028 m!, D0 the self-diffusion
coefficient of isolated particle in water (2.4
310211 m2 s21), and ġ the shear rate. In these exper
ments, the Pe´clet number was always low (Pe51022).

For samples made in the gaslike state at very low volu
fractions (fe f f!1), the stress induced by the shear rate w
relaxed quasi-instantaneously. In fact, the shear rate was
low enough so that spontaneous relaxations of the disper
kept it near equilibrium while it was perturbed. An expe
mental criterion for this regime was a measured stress
portional to the shear rate~Newtonian behavior!.

For dispersions in the soft solid state, at the applied sh
rates~from 831024 to 0.8 s21). the lack of free volume
(fe f f.1) quenches the spontaneous motion, which wo
restore equilibrium. It was found that the stress remains o
plateau, independent of shear rate, over nearly five dec
in shear rates. The bulk of the sample remained undeform
while all the shear was concentrated in a small layer eithe
the bulk itself~internal slip! or near the wall~wall slip!. This
fracture allowed the stress to remain on a plateau.

III. MODEL

We use a Monte Carlo method modified to take acco
of the Brownian motion of the particles and of the potent
created by the electrostatic repulsions between the partic
The circular particles are moving on a two-dimensional
angular lattice@see Fig. 1~a!#. In order to remove finite-size
effects, we impose periodic boundary conditions on the le
and right-hand sides of the simulation box. The bottom lim
is static and the upper limit has a nonzero velocity. To si
plify the impulsion transmission from the two limiting walls
we have simply stick particles on them, each of these p
ticles having the velocity of its corresponding wall. The p
sitions of the particles are limited to the lattice intersectio
as in the lattice-gas model.

At the beginning of the simulation, the particles have on
a Brownian velocity: The additional velocity imposed by th
moving wall is transmitted to them during the whole sim
lation. At each Monte Carlo step~MCS!, one particle is cho-
sen with a probability proportional to its velocity; this allow
one to obtain a MCS that is similar to a time scale. To d
termine the motion direction, the velocity vector is project
on the grid and the direction is chosen with a probabil
proportional to the projections@see Fig. 1~b!#. Then this par-
ticle interacts with its nearest neighbor in the direction of
projected motion. Afterward, the chosen particle is moved
the lattice along its new velocity direction: At best, it mov
to the very next site with respect of its velocity direction
there is no particle on this neighboring site.

An important feature of this simulation is that the pa
ticles interact through the Yukawa potential. This potent
acts on two levels: first, on the particle motion and seco
on the direct interaction between two particles. Indeed,
particle can move itself only when the potential gradient
the direction of its motion is negative or if its kinetic energ
allows it to overcome the potential barrier.
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57 1999MONTE CARLO SIMULATIONS OF COLLOIDAL . . .
The direct interaction of two particles is computed by
classical mechanics equation@13#

a5E
r min

`

r
dr

r 2

A12
r2

r 2
2

2U

mv`
2

, ~4!

whereU is the Yukawa potential,r is the impact parameter
andv is the reduced velocity~velocity of the center of mas
of the two particles! before the interaction and if one consi
ers that they come from infinity,r min is the square root of the
integrand. So the deviation anglex for the trajectory of the
reduced particle is

x5up22au. ~5!

Then it is easy to compute the real deviation and velocitie
the two particles 1 and 2 knowing that their position vect

FIG. 1. ~a! Representation of the simulation box, which h
periodic boundary conditions on the left- and right-hand sides.
box is limited on the top by a moving wall with constant veloci
and is limited on the bottom by a static wall. The particles are
the beginning of the simulation, put at random on the triangu
lattice. In order to simplify the impulsion transmission from the tw
walls, particles have been stuck on them.~b! The velocity of each
particle is computed off lattice, but the motion of the particle are
lattice. In addition, the particle positions remain on the intersecti
of the grid. The arrow represents the velocity vector before
placement and the dashed circle represents the most probable
tion of the particle after motion.
f
s

are related to the position vector of the reduced particle
rW5rW12rW2. So the interaction between two particles is elas

The Yukawa potential depends on the temperatureT @see
Eq. ~1!#; so it is essential to calculatekBT in our Monte
Carlo system. The temperature of the dispersion is clos
related to the Brownian-motion velocity. The classic
Langevin equation is

ṗi~ t !52jpi~ t !1 p̃ i~ t !, ~6!

where j is the friction constant,pi is the momentum of a
single particlei , and p̃ i is the random force. This random
force acts on the particles and induces a random motion
our simulation, we have simply computed this random m
tion by adding at each Monte Carlo step a random veloc
The random velocity distribution is a Gaussian and in o
case^vW 2&51. The autocorrelation function of this rando
force is given by

^ p̃ i~ t ! p̃ i~0!&52mkBTjd~ t !. ~7!

At long times, particles motions generated by Eq.~6! con-
form to Einstein’s relation

2tD5
1

3
^urW i~ t !2rW i~0!u2&, ~8!

with j related to the diffusion coefficientD by

j5kBT/mD. ~9!

We do not know the diffusion coefficientD, but the friction
constantj can be approximated knowing the Stokes dr
force

FW drag528pahvW 5m
dvW

dt
, ~10!

wherea is the particle radius andh is the viscosity of the
surrounding fluid. The breaking action of the surroundi
fluid has been represented via this Stokes drag force.
compute the time, we need a characteristic velocity an
characteristic length in the simulation. We have chos
vwall , which is the velocity of the moving wall, as the cha
acteristic velocity and the diameter of the particles 2a as the
characteristic length. So, by approximating the timedt by
2a/vwall , we obtain

j}
32pa2h

mvwall
. ~11!

Conversely, the Brownian velocity is related to the tempe
ture T by the well-known relation

^v2&5kBT/m. ~12!

Thus writings25vW wall
2 /^vW 2&, we obtain

kBT5
1

mj2s2
~32pa2h!2, ~13!
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2000 57N. OLIVI-TRAN, R. BOTET, AND B. CABANE
so the Yukawa potential can be computed, taking accoun
the temperature, the particle radius, and the interparticle
tances.

In the following we will present results including the ev
lution of the stress as a function of the surface fraction.
compute this stress, we have calculated the transfer of
tangential impulse of the particles to the static wall.

IV. RESULTS

Experimentally, the Brownian velocity of the particles
about 0.4 m s21 and the shear rate is (831024) – 0.8 s21.
We have calculated the parameterskBT,U(r ) of our simula-
tion as a function of the coefficients, which is the rate be-
tween the Brownian velocity and the moving wall velocit
and as a function of the length scale of the lattice (520
31028 m!. The other parameters such as the friction co
stantj ands have been deduced from experimental dataj
51025, a51028 m, andh51023 Pa s.

We reached the steady state of the flow for about 5
MCS per particle. For low surface fractions~i.e., f50.1 and
fe f f!1) , we recovered a Newtonian flow regime where t
horizontal parts of the velocity vectors increase linearly fro
the static wall to the moving wall. In order to obtain th
horizontal velocity profile, we had to average, with respec
the MCS, this velocity profile on the same simulation. In F
2 the black circles represent the velocity profile in the Ne
tonian regime. The regression on this curve, which is rep
sented by a long-dashed line, shows that the evolution of
velocity is linear in this case. This regime occurs for lo
surface fractionsf,0.3. On the same figure, we have plo
ted the horizontal velocity profile~white diamonds! for a
higher surface~volume! fraction f50.5 (fe f f@1). As one
can see, there is a steep increase of the velocity near

FIG. 2. Horizontal velocity profile (m s21) as a function of the
distance from the moving wall~in units of 20 nm! for f50.1

~white diamonds! and forf50.5 ~black squares! and ġ50.8 s21.
The evolution of the velocity is linear on average for the low
surface fraction, which is characteristic of a Newtonian regime i
Couette geometry. For the higher volume fraction, the is a slip n
the two walls and the flow is no longer Newtonian.
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static wall as well as near the moving wall. The veloc
increases more slowly in the bulk of the dispersion. This p
is not symmetric due to the history of the mechanism:
time t50, the dispersion is at rest with respect of the Brow
ian motion of particles; then when the upper wall begins
move, the particles cannot follow its motion due to the la
of free surface~volume!. It is only when the dispersion
reaches the steady state that it begins to slip near the s
wall. So the difference between the velocity of the wall a
the velocity of the dispersion is greater near the moving w
than near the static wall.

In Fig. 3 we show the evolution of the stress~which is
calculated by computing the transfer of the tangential i
pulse to the static wall! with the applied shear rate for tw
different surface~volume! fractions fe f f!1 (f50.1) and
fe f f@1 (f50.5). In this case, we have computed only t
stress induced by non-Brownian motion; the stress due to
Brownian behavior of particles has been removed. As o
can see for the lower surface~volume! fraction, the stress is
proportional to the shear rates: This shows that the flow
Newtonian. However, for the higher surface~volume! frac-
tion, we can see that there is a saturation of the stress:
slipping of the dispersion that is a consequence of the h
stress allows the resulting stress to become steady regar
of the shear rate.

So there is a transition between the fluid and the soft s
state~see Fig. 4!. This transition occurs, in two dimension
betweenf50.2 (fe f f50.8) andf50.3 (fe f f51.2) in the
limit of the applied shear rates~in this case we chosek21

510 nm!. The nonlinear evolution of the horizontal velocit
profile has been taken as the characteristic of the soft s
state. Figure 4 can be seen as a phase diagram betwee
fluid state and the soft solid state. This transition occ
when the free volume, i.e., the volume between the effec

r
a
ar

FIG. 3. A log-log plot of the numerical evolution of the non
Brownian stress~N/kg! as a function of the applied shear rate (s21)
within the experimental interval for two surface fractions:f50.1
~squares! andf50.3 ~circles!. The stress evolves linearly with th
shear rate for the lower concentration~Newtonian regime!. For the
higher surface fraction, the stress increases and reaches a thre
The arrow shows the transition location from fluid to soft so
state.
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57 2001MONTE CARLO SIMULATIONS OF COLLOIDAL . . .
particles, is close to zero or even when the effective partic
overlap. When the free volume decreases, the dispersion
not release the stress by particles displacement. So the
chanical response to stress may be different from that in
fluid state as one can see in the following. We can see
the end of the Newtonian regime occurs forf50.2 (fe f f
50.8).

To see the effect of high stress on the structure of
dispersion, we have also plotted the horizontal particle d
sity as a function of the distance to the moving wall. Ob
ously, there is a dip of this density at two given distanc
~Fig. 5!. The depth of these dips increases with the app
shear rates. The locations of these dips are not fixed: T
change for different simulations with the same applied sh
rate and same surface~volume! fraction. Moreover, the num
ber of these layers varies between one and two. To visua
this concentration change, refer to Fig. 6, where a portion
the simulation box has been represented. It is easy to rem
that there is a lack of particles on two given horizontal lin
in the dispersion. Experimentally, two adhesion conditio
have been used: slippery walls where the depleted layer
located near the wall and adhesive walls where the layer
located anywhere in the sample. For the numerical comp
tions, the wall can be thought of as adhesive since we did
add any repulsive potential for the particles sticked on
wall. So the difference of potential between the wall and
bulk is negative and thus can be considered as attractive

Because the walls induced a break in the continuity of
sample, the slip layer was mostly located near the wa
Over more than 100 simulations, this layer appeared ei
near the moving wall or near the static wall. This transie
lack of particles may be enlarged when stress reaches
threshold . Finally, we have computed the transfer of
normal impulse to the static wall for a surface~volume! frac-
tion fe f f@1. When the shear rate increases from 831024 to

FIG. 4. A log-log plot of the critical applied shear rate (s21),
which corresponds to the fluid to soft solid state transition, ver
the surface fraction~dimensionless!. The evolution of the critical
applied shear rate allows one to obtain a phase diagram on the
figure: There are two regions, Newtonian behavior and soft s
behavior, which depend on the applied shear rate and the su
fraction.
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0.8 this impulse transfer varies from 1022 to 1.8. We have
observed the same phenomenon on the moving wall. T
observation is in accordance with the theory of Nozieres
Quemada@5#, who intuited a lift force in the dispersion to
explain the formation of a plug in the dispersion.

V. DISCUSSION

The central result of this work is the observation of
crossover from fluidlike flow to solidlike slipping in the nu
merical simulation of a concentrated dispersion. We reco
the fluid behavior at low surface~volume! fractions. In the
numerical simulations, the fluid behavior is characterized
a horizontal velocity profile that is a linear function of th

s

me
d
ce

FIG. 5. Horizontal particle concentration (mm21) versus the
distance~in units of 20 nm! to the moving wall (f50.5). This
concentration decreases at two given points. These points do
have a fixed location: They depend on the simulation, although
same parameters were used.

FIG. 6. Example of the simulation box for high surface~vol-
ume! fraction (f50.5). The dispersion is homogeneous except
two given horizontals~represented by horizontal dashed line!,
where there is a lack of particles.
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2002 57N. OLIVI-TRAN, R. BOTET, AND B. CABANE
distance to the static wall~Fig. 2!. Thus all the horizontal
lines of particles are moved at the same shear rate with
spect to their neighbors. As a result of this shear, there
tangential stress exerted on the walls and this stress g
proportionally to the shear rate. Consequently, the fluid
Newtonian at the shear rates used in the simulation. T
fluid behavior is explained by the fact that there is sufficie
free volume for the particles to move with respect to t
applied shear rate. Indeed, for the surface~volume! fractions
that show fluid behavior, the range of the potential~screen-
ing length k21) is small with respect to the interparticl
distances. In this case, the effect of the potential on the
havior of the fluid is small; consequently, the method us
here to describe the fluid is similar to the classical meth
introduced by Metropoliset al. @9#.

At higher surface~volume! fractions, we observe a tran
sition to solidlike slipping. The criterion used to recogni
the transition is the observation of a nonlinear velocity p
file ~Fig. 2!. At the same time, we observe two dips in t
concentration profile, which mark the locations of the s
layers~Fig. 5!. A quantitative determination of the thresho
shows that it depends on the shear rate~Fig. 4!. Accordingly,
there is, for each dispersion, a critical shear rate below wh
it can accommodate the shear and beyond which it will s
as a solid. This transition may be explained by the fact t
the dispersions of higher surface~volume! fractions have
little free volume available and therefore shear motion
sults essentially from the motion of vacancies. Consequen
there is a critical shear rate where it becomes more effic
to concentrate vacancies in one line near the wall rather
distribute them throughout the fluid.

It is interesting to note, however, that the bulk part of t
sample continues to deform slowly after the threshold
been reached: Immediately after the motion of the walls w
initiated, the velocity profile was flat and then it deform
progressively at long times~Fig. 2 shows the velocity profile
at long times!. Thus the solid deforms at the maximum ra
allowed by the concentration of vacancies and the exc
shear rate is taken up by the depleted region.

Three theories have been proposed to explain the for
tion of one or several depleted layers beyond the transi
from fluidlike to solidlike behavior. First, the alignment o
planes of particles in the shear has been observed in collo
crystals made of particles larger than the colloidal silic
studied here@14–18#. Xue and Grest@8# found numerically
this alignment, but also for larger particles. Though we ha
been working on lattice, we did not observe this alignme
Second, there is disorganization of the particles under s
~‘‘melting’’ ! @17,19#. Typically, there is shear alignment a
low shear rates and then shear melting at higher shear r
The stress raises sharply when melting occurs. In this c
too we did not observe either the alignment at low shear r
or the stress increase. Finally, the last theory is that
process that increases the amount of free volume in a
ticular layer will turn this layer into a slip layer. This theor
is very close to that of Nozieres and Quemada@5#, who pro-
posed the existence of a lift force that could separate the
into two parts. It is also close to the calculations of Schm
et al. @6# on the flow-concentration coupling.

Numerically, beyond the transition from fluidlike to so
idlike behavior, we observe that the stress remains cons
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regardless of the applied shear rate~Fig. 3!. This is indeed
the behavior observed in the experiments on the ‘‘real’’ d
persions and it corresponds to what is generally called a
idlike slip. Still, we need to explain how the material ma
ages to keep the stress locked at a constant level.
information obtained from the simulation is that the two di
in the concentration profile become deeper still when sh
rate is increased beyond the critical shear rate. This o
ously explains why the slipping becomes more efficie
However, we can also examine which process in the sim
tion maintains the dips in the concentration profile. This p
cess may be described as follows. Consider one particl
one of the depleted lines and a neighboring particle in
dense line next to it towards the wall. Due to the high ho
zontal ~due to the shear direction! velocity of the particle in
the dense line, a collision between the two particles w
more frequently cause the particle in the depleted laye
acquire a velocity that pushes it away from the wall~Fig. 7!.
Thus it is a simple feature of the elastic interaction th
causes one line of particles near the wall to be depleted.
increase in the velocity of the wall causes a stronger de
tion, which allows the stress to remain constant.

In a more quantitative way, we need to explain why the
is a threshold for this effect and why the stress remains c
stant beyond the threshold. The depletion that we obse
may be characterized by a ‘‘normal’’ force that keeps t
particles away from the wall. We have computed this ‘‘lift
force, as mentioned in the preceding paragraph and fo
that it increases regularly with the shear. This normal forc
opposed by the osmotic pressure of the fluid that tends to
the depleted layer. Consequently, the threshold for the
mation of a depleted layer must be reached when this
force exceeds the osmotic pressure of the fluid.

On a more global level, this explanation appears to be
line with the theory of Nozieres and Quemada@5#, who pro-
posed the existence of a lift force that could separate the b
fluid into two parts. It is also close to the analysis of Schm
et al. @6#, who postulate a flow-concentration coupling to e
plain these phenomena. The differences with the two ot
theories@17,19,8# may be explained by the different potenti

FIG. 7. Behavior of the particles near the slip layer.
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that has been used here. We may recover other behavio
the dispersions if we employ, for example, a long-range
tential.

VI. CONCLUSION

We have used here a Monte Carlo method that takes
count of the Brownian motion of the particles and of t
interparticle potential. These additive characteristics of
method have allowed us to recover the phase separatio
concentrated colloidal dispersion and gave also a good
resentation of the fluid state of these dispersions. The
merical parameters are in accordance with the experime
ones~temperature and rate of shear velocity with Browni
velocity!, so this method allows one to compare numeri
results with experimental ones and may represent the l
concentration of particles that cannot be determined exp
mentally. It is known that, in rheology, dispersion may ha
two different behaviors: Solidlike and fluidlike. Here w
have shown that for given volume fractions, a dispers
may have these two behaviors.
e,

.

of
-

c-

e
of
p-
u-
tal

l
al
ri-

n

Moreover, we were able to analyze the slip layer whi
allows the dispersion to lower the stress due to the shear,
we were able to show that the slip layer is in fact a sm
fluid region, in opposition with the bulk, which is in a so
solid state, a feature that was not possible to determine
perimentally.

It might be interesting now to change other paramet
and constants in this model such as the monodispersity o
particle by introducing two particle sizes and the shape of
particles~for example, to simulate the rheological properti
of plane-shaped particles!. Moreover, it would be simple to
change the interparticle potential by adding a small van
Waal attractive part.

ACKNOWLEDGMENTS

We would like to thank Bernard Bernu and Luc Bello
for fruitful discussions. This work was supported in part
funds from CNRS DIMAT.
ci.

i.

J.

d-
@1# J. Persello, A. Magnin, J. Chang, J. M. Piau, and B. Caban
Rheol.38, 1845~1994!.

@2# T. R. Kirkpatrick and J. C. Nieuwoudt, Phys. Rev. Lett.56,
885 ~1986!.

@3# J. J. Erpenbeck, Phys. Rev. Lett.52, 1333~1984!.
@4# L. V. Woodcock, Phys. Rev. Lett.54, 1513~1985!.
@5# P. Nozieres and D. Quemada, Europhys. Lett.2, 129 ~1986!.
@6# V. Schmitt, C. M. Marques, and F. Lequeux, Phys. Rev. E52,

4009 ~1995!.
@7# M. Y. Louge, Phys. Fluids6, 2253~1994!.
@8# W. Xue and G. S. Grest, Phys. Rev. Lett.64, 419 ~1990!.
@9# N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H

Teller, and E. Teller, J. Chem. Phys.21, 1087~1953!.
@10# J. W. Vervey and J. Th. Overbeek,Theory of the Stability of

Lyophobic Colloids~Elsevier, Amsterdam, 1948!.
@11# J. A. Barker and D. Henderson, J. Chem. Phys.47, 2846

~1967!.
J.@12# J. W. Goodwin and R.W. Hughes, Adv. Colloid Interface S
42, 303 ~1992!.

@13# L. Landau and E. Lifshitz,Mécanique ~Editions de la Paix,
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