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Monte Carlo simulations of colloidal dispersions under shear
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We have used a two-dimensional Monte Carlo method to represent the evolution of a colloidal dispersion
under shear. This method involves the action of the Derjaquin-Landau-Verwey-Overbeek potential between
particles and the action of Brownian motion. The parameters of our simulations have been adjusted to fit the
experimental data: temperature and shear velocity. For low volume fractions we find the Newtonian regime
where the dispersion evolves as a fluid. For large volume fractions the dispersion has no longer the properties
of a fluid. As found experimentally, we observe that it forms a slip layer where only a few particles are located
and that allows the dispersion to slip as a wh¢®1063-651%98)09302-7

PACS numbes): 47.50+d, 47.20-k, 83.20.Jp, 82.70.Dd

I. INTRODUCTION tions for the present study. The other motivation was the
observation that in such conditions the flow field may be-
A colloidal dispersion can be considered as a mixture income inhomogeneous. Indeed, Perseltal. [1] have ob-
which the particles of one component are much larger thaserved that the crossover to a solidlike response is associated
those of all the others. If the size difference is sufficientlywith a localization of the shear in a slip layer. Experimen-
large, the smaller component can be thought of as forming tally, it was not possible to determine the composition of the
fluid that occupies the space between the big particledluid that formed the slip layers, i.e., did it have the same
Brownian motions of the bigger particles are induced by thecomposition as the bulk dispersion or did it have a lower
collisions of the smaller with the bigger ones. particle concentration. Thus a numerical simulation might be
Nanometric colloidal dispersions resemble molecular flu-a practical alternative to examine the mechanisms that lead
ids for two reasons. First, the Stokes drag force exerted bto the formation of slip layers in very concentrated disper-
the solvent on the particles is negligible. Consequently, thaions.
motion of the large particles is determined only by interpar- There have been a number of theoreti@land compu-
ticle interactions and by thermal agitation. Second, the soltational[3,4] investigations of the effect of high shear rate,
vation of particle surfaces by solvent molecules causes ththough mostly for atomic fluids. Nozieres and Quem§ila
interparticle interactions to be of order &ET at ambient developed a theory to explain the plug formation in shear
temperature, which is the range for fluid behavior. For simi-flow by introducing a lift force that leads the particles to the
lar reasons, colloidal dispersions are convenient to study exegions of lower shear. More recently, Schnttal. [6]
perimentally. For instance, the strength and the range of inwrote a theory based on the coupling between flow and con-
terparticle potential can be varied through modifications ofcentration to explain the nonlinear response to shear in such
the solvent composition. In addition, the number density ofdispersions. From the numerical point of view, Lougg
particles can be easily varied while the fluid remains at amused granular dynamics simulations and obtained a phase
bient pressure. separation for high shear rates. However, his study failed to
Transitions from fluid behavior to solid behavior have explain the real causes of this phase separation. Xue and
been observed at high number densities of particles. Fluid&rest[8] observed a shear-induced alignment of colloidal
that are in the transition region flow in a bizarre wighj. particles in a Brownian-dynamics simulation carried out in
Typical results have been obtained with hanometric disperthe presence of an oscillating shear flow.
sions of silica in water by Perselkt al.[1]. For dispersions Monte Carlo simulations are often used in the representa-
made at low volume fractions of silica, they found normaltion of molecular fluids[9], but they seldom represent the
fluid behavior at all shear rates. However, dispersions madtéow of colloidal particles due to the different nature of the
at high volume fractions were found to resist weak sheainteractions between particles and molecules. The originality
stresses, and they yield fracture or slip at sufficiently highof our modified Monte Carlo method is that it takes account
stress. It is expected that this crossover from fluid to solidof the interparticle potential and the Brownian motion of the
response should occur for most fluids as a function of shegparticles. Moreover, the parameters injected in the simula-
rate, i.e., fluid behavior at low shear rates and solid behaviotions are calculated to be very close to the experimental ones,
at high shear rates. However, it is not possible experimenfeature that makes the results more realistic than previous
tally to cover these ranges of shear rates, as some may by Banulations.
impossibly high to reach ¥10* s™1) or inconveniently In this paper we will study numerically the shear flow of
slow to follow (<10 3s™1). Numerical simulations do not nanometric spherical dispersions in a two-dimensional
suffer from this limitation, and this was one of the motiva- Monte Carlo model. In Sec. Il we will present the former
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experimental results as well as the different physical charac- 2;
teristics of such dispersions. In Sec. Il we will explain the Pe= —, 3
Monte Carlo method that has been used and takes account of Do
the pair potential between particles and their Brownian mo-
tion. In Sec. IV results will be introduced. Finally, in Sec. V wherea is the particle radius (10 m), D, the self-diffusion
there will be a comparison with experiments and a generatoefficient of isolated particle in water (2.45
discussion of the model and the results. We will conclude inx 10~ 1* m? s71), and y the shear rate. In these experi-
Sec. VL. ments, the Pdet number was always low (P€l0 ?).
For samples made in the gaslike state at very low volume
Il. EXPERIMENTS fractions (p.1<<1), the stress induced by the shear rate was
relaxed quasi-instantaneously. In fact, the shear rate was kept
The common characteristic of nanometric silica disper{ow enough so that spontaneous relaxations of the dispersion
sions is their extremely large surface area. Due to this sulkept it near equilibrium while it was perturbed. An experi-
face area such dispersions can be used for coatings or taental criterion for this regime was a measured stress pro-
promote sol-gel reactions. Strong repulsions between thgortional to the shear rai@lewtonian behavior
particle surfaces are needed in order to retain this surface For dispersions in the soft solid state, at the applied shear
area. rates (from 8x 107 to 0.8 s1). the lack of free volume
In water, dispersed particles are usually kept apart fronf_.>1) quenches the spontaneous motion, which would
each other due to electrostatic repulsions. It has been provedstore equilibrium. It was found that the stress remains on a
that colloidal dispersions interact by the mean of theplateau, independent of shear rate, over nearly five decades
Derjaguin-Landau-Vervey-Overbe¢RLVO) potential[10].  in shear rates. The bulk of the sample remained undeformed
This DLVO potential has an attractive van der Waals partyyhile all the shear was concentrated in a small layer either in
which can be neglected in most cases, and a repulsive pathe bulk itself(internal slip or near the wallwall slip). This
which can be represented by the Yukawa potential fracture allowed the stress to remain on a plateau.

U(r) Z%Lge <r—2a

kBT r (1+ Ka)z’ (1) I1l. MODEL

We use a Monte Carlo method modified to take account
of the Brownian motion of the particles and of the potential
created by the electrostatic repulsions between the patrticles.
The circular particles are moving on a two-dimensional tri-
angular latticg see Fig. 1a)]. In order to remove finite-size
effects, we impose periodic boundary conditions on the left-
and right-hand sides of the simulation box. The bottom limit
is static and the upper limit has a nonzero velocity. To sim-
plify the impulsion transmission from the two limiting walls,

i J : we have simply stick particles on them, each of these par-
mentally, it has been shovxlm that the range of interactions i§icjes having the velocity of its corresponding wall. The po-

a1 IS very close toa+« . Finally, the effective volume  gjiions of the particles are limited to the lattice intersections,
fraction ¢.¢; used by the particles can be calculated as as in the lattice-gas model.

At the beginning of the simulation, the particles have only

whereZ=4a/lLg, a is the particle radiuss is the screening
efficiency, and_g is the Bjerrum length of water. At contact
(r=2a), for a=10 nm,Z=60, andx~*=10 nm the repul-
sive energy is 3k T. This energy allows the dispersion to
remain stable for long times, for several months.

If the pair interaction energy of particles at a distande
U(r), then the neighbors of a particle are effectively ex-
cluded from a region of radiua.¢; around it[11]. Experi-

beri= blaeri/a)", (2)  a Brownian velocity: The additional velocity imposed by the
moving wall is transmitted to them during the whole simu-
whered is the dimension of space. lation. At each Monte Carlo stgpCS), one particle is cho-

The response of dispersions to mechanical testing may b&en with a probability proportional to its velocity; this allows
of two types: linear viscous response to small stresses amghe to obtain a MCS that is similar to a time scale. To de-
nonlinear response to large stresses that may change tkermine the motion direction, the velocity vector is projected
structure of the dispersidri2]. For the colloidal dispersions on the grid and the direction is chosen with a probability
studied experimentally and numerically here, the occurrencproportional to the projectionsee Fig. b)]. Then this par-
of either behavior is determined by the volume fraction. Forticle interacts with its nearest neighbor in the direction of its
low volume fraction, we recovered the gaslike state: Lineatprojected motion. Afterward, the chosen particle is moved on
response was found in all cases unless the shear rate excedlds lattice along its new velocity direction: At best, it moves
the rates of spontaneoyBrownian motion for individual to the very next site with respect of its velocity direction if
particles that are on the order of 0.4 msFor large vol- there is no particle on this neighboring site.
ume fraction, i.e., forde¢>1, the dispersions have the ap-  An important feature of this simulation is that the par-
pearance and general properties of physical gels without havicles interact through the Yukawa potential. This potential
ing their connectivity. They may be defined as soft solids. acts on two levels: first, on the particle motion and second,

Rheological experiments at a steady state were performeah the direct interaction between two particles. Indeed, one
on the silica dispersior|4]. To compare the shear rate to the particle can move itself only when the potential gradient in
Brownian velocity, it is important to introduce the @t  the direction of its motion is negative or if its kinetic energy
number allows it to overcome the potential barrier.
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Moving wall are related to the position vector of the reduced particle by

r= Fl— r,. So the interaction between two particles is elastic.
The Yukawa potential depends on the temperalufsee

Eq. (1)]; so it is essential to calculatesT in our Monte

v

|

- NS N, 2 Carlo system. The temperature of the dispersion is closely
§ /\_/\ / = related to the Brownian-motion velocity. The classical
é . E " Langevin equation is
A8 W AVAVAVAV 25 | 3
23 NOONNN £3 Pi(t)=—épi(H+Pi(b), ®
V=0 where ¢ is the friction constantp; is the momentum of a
(@) Static wall single particlei, andp; is the random force. This random

force acts on the particles and induces a random motion. In
our simulation, we have simply computed this random mo-

J \ tion by adding at each Monte Carlo step a random velocity.
\ /? The random velocity distribution is a Gaussian and in our
—= \ -
Vo ~- case(v?)=1. The autocorrelation function of this random

force is given by

(Pi(OPi(0))=2mkgTES(1). (7)

At long times, particles motions generated by E8). con-
form to Einstein’s relation

1 . -
2tD=§<|ri(t)—ri(0)|2>, (8)
(b) with ¢ related to the diffusion coefficie by
FIG. 1. (a) Representation of the simulation box, which has £=KsT/mD )
=kg )

periodic boundary conditions on the left- and right-hand sides. The

box is limited on the top by a moving wall with constant velocity We do not know the diffusion coefficiel. but the friction
and is limited on the bottom by a static wall. The particles are, at '

the beginning of the simulation, put at random on the triangularconStantg can be approximated knowing the Stokes drag
lattice. In order to simplify the impulsion transmission from the two force

walls, particles have been stuck on theilm. The velocity of each -
particle is computed off lattice, but the motion of the particle are on
lattice. In addition, the particle positions remain on the intersections
of the grid. The arrow represents the velocity vector before dis-
placement and the dashed circle represents the most probable pogiherea is the particle radius ang is the viscosity of the
tion of the particle after motion. surrounding fluid. The breaking action of the surrounding
fluid has been represented via this Stokes drag force. To
compute the time, we need a characteristic velocity and a

characteristic length in the simulation. We have chosen

R - v
Fdragz—SWanvzma, (10

The direct interaction of two particles is computed by a
classical mechanics equatipi3]

dr vwall » Which is the velocity of the moving wall, as the char-
p— acteristic velocity and the diameter of the particlesds the
o r? characteristic length. So, by approximating the tidteby
a=f , (4 2alvyan, We obtain
min p2 2U
1——— — 2
r2 mo? o @. (12)
Mo yal

whereU is the Yukawa potential is the impact parameter, ) o

andv is the reduced velocitgvelocity of the center of mass Conversely, the Brownian velocity is related to the tempera-
of the two particlesbefore the interaction and if one consid- ture T by the well-known relation

ers that they come from infinity i, is the square root of the 5

integrand. So the deviation anglefor the trajectory of the (v)=kgT/m. (12)

reduced particle is L, = - .
Thus writings“=uvy,,,,/(v<), we obtain
x=|7m—2al. (5)

Then it is easy to compute the real deviation and velocities of kgT= 1 (32wa2y)?, (13)
the two particles 1 and 2 knowing that their position vectors 252
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FIG. 2. Horizontal velocity profile (ms!) as a function of the FIG. 3. A log-log plot of the numerical evolution of the non-

distance from the moving wal{in units of 20 nm for ¢=0.1 Brownian stresgN/kg) as a function of the applied shear rate {s
(white diamondsand for ¢=0.5 (black squaresand y=0.8 s'1.  Within the experimental interval for two surface fractions=0.1
The evolution of the velocity is linear on average for the lower (Squaresand ¢=0.3 (circles. The stress evolves linearly with the
surface fraction, which is characteristic of a Newtonian regime in aShear rate for the lower concentratiddewtonian regime For the

Couette geometry. For the higher volume fraction, the is a slip neafigher surface fraction, the stress increases and reaches a threshold.
the two walls and the flow is no longer Newtonian. The arrow shows the transition location from fluid to soft solid

state.

so the Yukawa potential can be computed, taking account 0gtatic wall as well as near the moving wall. The velocity

the temperature, the particle radius, and the interparticle disi,.;eases more slowly in the bulk of the dispersion. This plot
tances. _ _ _ _ is not symmetric due to the history of the mechanism: At
In the following we will present results including th? BVO- timet=0, the dispersion is at rest with respect of the Brown-
lution of the_ stress as a function of the surface fraction. T, motion of particles; then when the upper wall begins to
compute this stress, we have calculated the transfer of the, e the particles cannot follow its motion due to the lack
tangential impulse of the particles to the static wall. of free surface(volume. It is only when the dispersion
reaches the steady state that it begins to slip near the static
IV. RESULTS wall. So the difference be_twe_en the velocity of the wall and
the velocity of the dispersion is greater near the moving wall
Experimentally, the Brownian velocity of the particles is than near the static wall.
about 0.4 ms! and the shear rate is 810" %) — 0.8 s'1. In Fig. 3 we show the evolution of the stre@shich is
We have calculated the parametkgd,U(r) of our simula-  calculated by computing the transfer of the tangential im-
tion as a function of the coefficiers; which is the rate be- pulse to the static wallwith the applied shear rate for two
tween the Brownian velocity and the moving wall velocity, different surface(volume fractions ¢e(r<1 (¢=0.1) and
and as a function of the length scale of the lattice20  ¢>1 (¢=0.5). In this case, we have computed only the
X 10"8 m). The other parameters such as the friction con-stress induced by non-Brownian motion; the stress due to the
stant ands have been deduced from experimental dgta: Brownian behavior of particles has been removed. As one
=10°% a=10"8m, andyp=10"2 Pas. can see for the lower surfa¢eolume fraction, the stress is
We reached the steady state of the flow for about 50@roportional to the shear rates: This shows that the flow is
MCS per particle. For low surface fractiofiee., $=0.1 and  Newtonian. However, for the higher surfageolume frac-
de1<1) , we recovered a Newtonian flow regime where thetion, we can see that there is a saturation of the stress: The
horizontal parts of the velocity vectors increase linearly fromslipping of the dispersion that is a consequence of the high
the static wall to the moving wall. In order to obtain the stress allows the resulting stress to become steady regardless
horizontal velocity profile, we had to average, with respect toof the shear rate.
the MCS, this velocity profile on the same simulation. In Fig.  So there is a transition between the fluid and the soft solid
2 the black circles represent the velocity profile in the New-state(see Fig. 4. This transition occurs, in two dimensions,
tonian regime. The regression on this curve, which is reprebetweend=0.2 (¢.;1=0.8) and¢=0.3 (¢d¢:;=1.2) in the
sented by a long-dashed line, shows that the evolution of thimit of the applied shear rateén this case we chose ™!
velocity is linear in this case. This regime occurs for low =10 nm). The nonlinear evolution of the horizontal velocity
surface fractiongp<<0.3. On the same figure, we have plot- profile has been taken as the characteristic of the soft solid
ted the horizontal velocity profiléwhite diamonds for a  state. Figure 4 can be seen as a phase diagram between the
higher surfacgvolume fraction ¢$=0.5 (¢.si>1). As one fluid state and the soft solid state. This transition occurs
can see, there is a steep increase of the velocity near thwhen the free volume, i.e., the volume between the effective
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FIG. 4. A log-log plot of the critical applied shear rate” {}, FIG. 5. Horizontal particle concentrationu™') versus the

which corresponds to the fluid to soft solid state transition, versugiistance(in units of 20 nm to the moving wall ¢=0.5). This

the surface fractiondimensionless The evolution of the critical  concentration decreases at two given points. These points do not

applied shear rate allows one to obtain a phase diagram on the sarRgve a fixed location: They depend on the simulation, although the
figure: There are two regions, Newtonian behavior and soft solidsame parameters were used.

behavior, which depend on the applied shear rate and the surface

fraction. 0.8 this impulse transfer varies from 19to 1.8. We have

observed the same phenomenon on the moving wall. This

particles, is close to zero or even when the effec_tive p‘_irtic'eﬁbservation is in accordance with the theory of Nozieres and
overlap. When the free volume decreases, the dispersion cag—

. ; uemadd5], who intuited a lift force in the dispersion to
not rglease the stress by particles d|§placement. So the m plain the formation of a plug in the dispersion.
chanical response to stress may be different from that in the
fluid state as one can see in the following. We can see that
the end of the Newtonian regime occurs fpr=0.2 (dess V. DISCUSSION

=0.8). _ The central result of this work is the observation of a
~To see the effect of high stress on the structure of thegssover from fluidlike flow to solidlike slipping in the nu-
dispersion, we have also plotted the horizontal particle denmerical simulation of a concentrated dispersion. We recover

sity as a function of the distance to the moving wall. Obvi-the flyid behavior at low surfacéolume fractions. In the
ously, there is a dip of this density at two given distances,ymerical simulations, the fluid behavior is characterized by

(Fig. 5). The depth of these dips increases with the applied; horizontal velocity profile that is a linear function of the
shear rates. The locations of these dips are not fixed: They

change for different simulations with the same applied shear moving wall
rate and same surfa¢eolume fraction. Moreover, the num-
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near the moving wall or near the static wall. This transient
lack of particles may be enlarged when stress reaches the FiG. 6. Example of the simulation box for high surfagel-
threshold . Finally, we have computed the transfer of theume fraction (¢=0.5). The dispersion is homogeneous except on
normal impulse to the static wall for a surfag®@lume frac-  two given horizontals(represented by horizontal dashed lipes
tion ¢ 1. When the shear rate increases from#B 4to  where there is a lack of particles.



2002 N. OLIVI-TRAN, R. BOTET, AND B. CABANE 57

distance to the static walFig. 2). Thus all the horizontal Wwall

lines of particles are moved at the same shear rate with re- [1690000000000000000])
spect to their neighbors. As a result of this shear, there is a

tangential stress exerted on the walls and this stress grows - ooorrtmrmiomemmmomeeo o omme ot

proportionally to the shear rate. Consequently, the flud is ... @,,,,,,,,fl??}?f‘?‘%f?_gf?r_l__

Newtonian at the shear rates used in the simulation. This Q =

fluid behavior is explained by the fact that there is sufficient

free volume for the particles to move with respect to the BEFORE INTERACTION

applied shear rate. Indeed, for the surfacdlume fractions

that show fluid behavior, the range of the poten(sdreen- Wall

ing length k1) is small with respect to the interparticle 168 0000000000000600)

distances. In this case, the effect of the potential on the be- '

havior of the fluid is small; consequently, the method used 7777777777 Q/
depleted region

here to describe the fluid is similar to the classical method oo ZEEITIIECLL
introduced by Metropolit al. [9]. G

At higher surfacgvolume fractions, we observe a tran-
sition to solidlike slipping. The criterion used to recognize

the transition is the observation of a nonlinear velocity pro- AFTER INTERACTION
file (Fig. 2). At the same time, we observe two dips in the
concentration profile, which mark the locations of the slip FIG. 7. Behavior of the particles near the slip layer.

layers(Fig. 5. A quantitative determination of the threshold
shows that it depends on the shear &ig. 4). Accordingly, regardless of the applied shear réfég. 3). This is indeed
there is, for each dispersion, a critical shear rate below whiclthe behavior observed in the experiments on the “real” dis-
it can accommodate the shear and beyond which it will slippersions and it corresponds to what is generally called a sol-
as a solid. This transition may be explained by the fact thatdlike slip. Still, we need to explain how the material man-
the dispersions of higher surfaggolume fractions have ages to keep the stress locked at a constant level. The
little free volume available and therefore shear motion reinformation obtained from the simulation is that the two dips
sults essentially from the motion of vacancies. Consequenthyin the concentration profile become deeper still when shear
there is a critical shear rate where it becomes more efficiemate is increased beyond the critical shear rate. This obvi-
to concentrate vacancies in one line near the wall rather thaously explains why the slipping becomes more efficient.
distribute them throughout the fluid. However, we can also examine which process in the simula-
It is interesting to note, however, that the bulk part of thetion maintains the dips in the concentration profile. This pro-
sample continues to deform slowly after the threshold hasess may be described as follows. Consider one particle in
been reached: Immediately after the motion of the walls wasne of the depleted lines and a neighboring particle in the
initiated, the velocity profile was flat and then it deformed dense line next to it towards the wall. Due to the high hori-
progressively at long time@ig. 2 shows the velocity profile zontal(due to the shear directipwelocity of the particle in
at long time$. Thus the solid deforms at the maximum ratethe dense line, a collision between the two particles will
allowed by the concentration of vacancies and the exceswore frequently cause the particle in the depleted layer to
shear rate is taken up by the depleted region. acquire a velocity that pushes it away from the w&il. 7).
Three theories have been proposed to explain the formaFhus it is a simple feature of the elastic interaction that
tion of one or several depleted layers beyond the transitiocauses one line of particles near the wall to be depleted. Any
from fluidlike to solidlike behavior. First, the alignment of increase in the velocity of the wall causes a stronger deple-
planes of particles in the shear has been observed in colloidtibn, which allows the stress to remain constant.
crystals made of particles larger than the colloidal silicas In a more guantitative way, we need to explain why there
studied herd14-18. Xue and Gres{8] found numerically is a threshold for this effect and why the stress remains con-
this alignment, but also for larger particles. Though we havestant beyond the threshold. The depletion that we observe
been working on lattice, we did not observe this alignmentmay be characterized by a “normal” force that keeps the
Second, there is disorganization of the particles under sheaarticles away from the wall. We have computed this “lift”
(“melting” ) [17,19. Typically, there is shear alignment at force, as mentioned in the preceding paragraph and found
low shear rates and then shear melting at higher shear ratdbat it increases regularly with the shear. This normal force is
The stress raises sharply when melting occurs. In this casepposed by the osmotic pressure of the fluid that tends to fill
too we did not observe either the alignment at low shear ratethe depleted layer. Consequently, the threshold for the for-
or the stress increase. Finally, the last theory is that anynation of a depleted layer must be reached when this lift
process that increases the amount of free volume in a paferce exceeds the osmotic pressure of the fluid.
ticular layer will turn this layer into a slip layer. This theory =~ On a more global level, this explanation appears to be in
is very close to that of Nozieres and Quemg®lh who pro-  line with the theory of Nozieres and Quemd&é, who pro-
posed the existence of a lift force that could separate the bulgosed the existence of a lift force that could separate the bulk
into two parts. It is also close to the calculations of Schmittfluid into two parts. It is also close to the analysis of Schmitt
et al.[6] on the flow-concentration coupling. et al.[6], who postulate a flow-concentration coupling to ex-
Numerically, beyond the transition from fluidlike to sol- plain these phenomena. The differences with the two other
idlike behavior, we observe that the stress remains constatiieoried17,19,8 may be explained by the different potential
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that has been used here. We may recover other behaviors of Moreover, we were able to analyze the slip layer which
the dispersions if we employ, for example, a long-range poallows the dispersion to lower the stress due to the shear, and
tential. we were able to show that the slip layer is in fact a small
fluid region, in opposition with the bulk, which is in a soft
solid state, a feature that was not possible to determine ex-
perimentally.

We have used here a Monte Carlo method that takes ac- It might be interesting now to change other parameters
count of the Brownian motion of the particles and of theand constants in this model such as the monodispersity of the
interparticle potential. These additive characteristics of theparticle by introducing two particle sizes and the shape of the
method have allowed us to recover the phase separation phrticles(for example, to simulate the rheological properties
concentrated colloidal dispersion and gave also a good repyf plane-shaped particlesMoreover, it would be simple to

resentation of the fluid state of these dispersions. The nighange the interparticle potential by adding a small van der
merical parameters are in accordance with the experimentgyaa)| attractive part.

ones(temperature and rate of shear velocity with Brownian

velocity), so this method allows one to compare numerical

results with experimental ones and may represent the local
concentration of particles that cannot be determined experi-
mentally. It is known that, in rheology, dispersion may have . .
two different behaviors: Solidlike and fluidlike. Here we e would like to thank Bernard Bernu and Luc Belloni
have shown that for given volume fractions, a dispersiorfor fruitful discussions. This work was supported in part by
may have these two behaviors. funds from CNRS DIMAT.

VI. CONCLUSION
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